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Abstract
In the allocation of indivisible goods, a prominent fairness notion is envy-freeness up
to one good (EF1). We initiate the study of reachability problems in fair division by
investigating the problem of whether one EF1 allocation can be reached from another
EF1 allocation via a sequence of exchanges such that every intermediate allocation is
also EF1. We show that two EF1 allocations may not be reachable from each other
even in the case of two agents, and deciding their reachability is PSPACE-complete
in general. On the other hand, we prove that reachability is guaranteed for two agents
with identical or binary utilities as well as for any number of agents with identical
binary utilities. We also examine the complexity of deciding whether there is an EF1
exchange sequence that is optimal in the number of exchanges required.

Keywords Reachability · Fair division · Indivisible goods · Exchanges

1 Introduction

Fair division refers to the study of how to allocate resources fairly among competing
agents, with applications ranging from divorce settlement to university course alloca-
tion to international dispute resolution [6, 21, 29]. While its formal study has a long
and storied history dating back to the work of Steinhaus [28], it remains a highly active
research area at the intersection of mathematics, economics, and computer science. In
particular, researchers have recently drawn connections between fair division and var-
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from the conference version (Theorems 3.4, 4.7, 4.8, 4.9, 4.10 and Proposition 4.1).
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ious other fields such as graph theory [2, 4], extremal combinatorics [1, 3], two-sided
matching [8, 12], and differential privacy [20], to name but a few.

In fair division, the goal is typically to find an allocation of the resource that is “fair”
with respect to the agents’ preferences. When allocating indivisible goods—such as
books, clothes, and office supplies—a prominent fairness notion in the literature is
envy-freeness up to one good (EF1). In an EF1 allocation of the goods, an agent is
allowed to envy another agent only if there exists a good in the latter agent’s bundle
whose removal would eliminate this envy. The “up to one good” relaxation is necessi-
tated by the fact that full envy-freeness is sometimes infeasible, as can be seen when
two agents compete for a single valuable good. It is well-known that an EF1 allocation
always exists regardless of the agents’ valuations for the goods and can moreover
be computed in polynomial time [7, 19]. The simplicity, guaranteed existence, and
efficient computation makes EF1 a particularly attractive fairness notion.1

In this work, we take a different perspective by initiating the study of reacha-
bility in fair division. Given two fair allocations—an initial allocation and a target
allocation—we are interested in whether the target allocation can be reached from
the initial allocation via a sequence of operations such that every intermediate allo-
cation is also fair. As an application of our problem, consider a company that wants
to redistribute some of its employees between its departments. Since performing the
entire redistribution at once may excessively disrupt the operation of the departments,
the company prefers to gradually adjust the distribution while maintaining fairness
among the departments throughout the process. Another example is a museum that
plans to reallocate certain exhibits among its branches—performing one small change
at a time can help ensure a seamless transition for the visitors. In this paper, we shall
use EF1 as our fairness benchmark and allow any two agents to exchange a pair of
goods in an operation. The reachability between EF1 allocations, or lack thereof, is an
interesting structural property in itself; similar properties have been studied in other
collective decision-making scenarios such as voting [24, 25].

Closest to our work is perhaps a line of work initiated by Gourvès et al. [9]. These
authors considered the “housing market” setting, where the number of agents is the
same as the number of goods and each agent receives exactly one good. In their model,
a pair of agents is allowed to exchange goods if the two agents are neighbors in a given
social network and the exchange benefits both agents. Their paper, along with a series
of follow-up papers [11, 15, 18, 22], explored the complexity of determining whether
an allocation can be reached from another allocation in this model and its variants.
More broadly, reachability problems are also known as reconfiguration problems [23];
examples of suchproblems that havebeen studied includeminimumspanning tree [14],
graph coloring [16], and perfect matching [5].

1 By contrast, it remains unknown whether a stronger fairness notion called envy-freeness up to any good
(EFX) can always be satisfied [1], whereas another well-studied fairness notion, maximin share fairness,
does not offer guaranteed existence [17].
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1.1 Our Contributions

As is often done in fair division,we assume that every agent is equippedwith an additive
utility function. We consider an “exchange graph” with allocations as vertices. The
first question we study is whether it is always possible for agents to reach a target
EF1 allocation from an initial EF1 allocation by exchanging goods sequentially with
each other while maintaining the EF1 property in all the intermediate allocations; in
other words, we ask whether the subgraph of the exchange graph consisting of all
EF1 allocations is connected. The second question is whether we could perform this
exchange process using as few exchanges as would be required if the intermediate
allocations need not be EF1; that is, whether there exists an EF1 exchange path which
is optimal in terms of the number of exchanges required. Note that each agent’s bundle
size remains unchanged throughout the process since every operation is an exchange
of goods. Our formal model is described in Sect. 2.

In Sect. 3, we investigate the setting where there are only two agents. Perhaps
surprisingly, we establish negative results even for this setting: the EF1 exchange
graph may not be connected, and even for those instances in which it is connected,
optimal EF1 exchange paths may not exist between EF1 allocations. Therefore, we
consider restricted classes of utility functions. We show that an optimal EF1 exchange
path always exists between any two EF1 allocations if the utilities are identical or
binary; this implies the connectivity of the EF1 exchange graph in these cases as well.

In Sect. 4, we explore the general setting of three or more agents. Interestingly, we
show that finding the smallest number of exchanges between twoallocations isNP-hard
in this setting even if we disregard the EF1 restriction. In addition, we establish that
deciding whether an EF1 exchange path exists between two allocations is PSPACE-
complete, and deciding whether an optimal such path exists is NP-hard even for four
agents with identical utilities. We also examine restricted utility functions in more
detail. We show that while connectivity of the EF1 exchange graph is guaranteed for
identical binary utilities, the same holds neither for identical utilities nor for binary
utilities separately. Furthermore, the optimality of EF1 exchange paths cannot be
guaranteed even for identical binary utilities. Overall, our findings demonstrate that
the case of three or more agents is much less tractable than that of two agents in our
setting.

With the exception of hardness results (Theorems 4.4, 4.5, and 4.10), our results are
summarized in Table 1. For the positive results, we also show that the corresponding
exchange paths can be found in polynomial time. Additionally, in “Appendix A”, we
present results for an alternative setting where transferring goods is allowed instead
of, or in addition to, exchanging them.

2 Preliminaries

Let N be a set of n ≥ 2 agents, and M be a set of m ≥ 1 goods. We typically denote
the agents by 1, . . . , n and the goods by g1, . . . , gm . A bundle is a (possibly empty)
subset of goods. An allocation A = (A1, . . . , An) is an ordered partition of M into n
bundles such that bundle Ai is allocated to agent i ∈ N . An (allocation) size vector
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�s = (s1, . . . , sn) is a vector of non-negative integers such that
∑

i∈N si = m and
si = |Ai | for all i ∈ N .

Given N , M , and �s, define the exchange graph G = G(N , M, �s) as a simple
undirected graph with the following properties: the set of vertices consists of all allo-
cationsA with size vector �s, and the set of edges consists of all pairs {A,B} such that
B = (B1, . . . , Bn) can be obtained from A = (A1, . . . , An) by having two agents
exchange one pair of goodswith each other—that is, there exist distinct agents i, j ∈ N
and goods g ∈ Ai and g′ ∈ A j such that Bi = (Ai ∪{g′})\{g}, Bj = (A j ∪{g})\{g′},
and Bk = Ak for all k ∈ N\{i, j}. Note that the exchange graph is a non-empty con-
nected graph. A path from one allocation to another on the graph is called an exchange
path. The distance between two allocations is the length of a shortest exchange path
between them.

Each agent i ∈ N has a utility function ui : 2M → R≥0 that maps bundles to non-
negative real numbers. We write ui (g) instead of ui ({g}) for a single good g ∈ M ,
and assume that the utility functions are additive, i.e., ui (M ′) = ∑

g∈M ′ ui (g) for all
i ∈ N andM ′ ⊆ M . The utility functions are identical if ui = u j for all i, j ∈ N—we
shall use u to denote the common utility function in this case. The utility functions are
binary if ui (g) ∈ {0, 1} for all i ∈ N and g ∈ M . An allocation A is envy-free up to
one good (EF1) if for all pairs i, j ∈ N such that A j 	= ∅, there exists a good g ∈ A j

such that ui (Ai ) ≥ ui (A j\{g}).
Given N , M , �s, and (ui )i∈N , define the EF1 exchange graph H = H(N , M, �s,

(ui )i∈N ) as the subgraph of the exchange graph G induced by all EF1 allocations, i.e.,
H contains all vertices in G that correspond to EF1 allocations and all edges in G
incident to two EF1 allocations. As we shall see later, EF1 exchange graphs are not
always connected, unlike exchange graphs. An exchange path using only the edges
in H is called an EF1 exchange path. An EF1 exchange path is optimal if its length is
equal to the distance between the two corresponding allocations (in G).

An instance consists of a set of agents N , a set of goods M , a size vector �s, and
agents’ utility functions (ui )i∈N .

3 Two Agents

In this section, we examine properties of the EF1 exchange graph when there are only
two agents. We remark that this is an important special case in fair division and has
been the focus of several prior papers in the area.2

We first consider the question of whether the EF1 exchange graph is necessarily
connected. One may intuitively think that with only two agents, an EF1 exchange path
is guaranteed between any two EF1 allocations because the two agents only need to
consider the envy between themselves. An agent may then carefully select a good
from her bundle to exchange with the other agent so as to ensure that the subsequent
allocation is also EF1. However, this in fact cannot always be done, as our first result
shows.

2 Plaut and Roughgarden [26, Sec. 1.1.1] discussed the significance of the two-agent setting in detail.

123



3658 Algorithmica (2024) 86:3653–3683

Theorem 3.1 There exists an instance with n = 2 agents with the same ordinal pref-
erences over the goods such that the EF1 exchange graph is disconnected.

Proof Consider the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6 g7 g8
u1(g) 3 3 2 2 2 2 0 0
u2(g) 3 3 1 1 1 1 0 0

Let A and B be allocations such that A1 = B2 = {g1, g2, g7, g8} and A2 = B1 =
{g3, g4, g5, g6}—it can be verified that both A and B are EF1. If there exists an EF1
exchange path between A and B, then there exists an EF1 allocation A′ adjacent to
A on the exchange path. Without loss of generality, A′ can be reached from A by
exchanging g3 with either g1 or g7. If g3 is exchanged with g1, then agent 1 envies
agent 2 by more than one good. If g3 is exchanged with g7, then agent 2 envies
agent 1 by more than one good. Therefore, neither of these exchanges leads to an EF1
allocation, so A′ cannot be EF1. Hence, no EF1 exchange path exists between A and
B. ��

Next, we consider the question of whether an optimal EF1 exchange path always
exists between two EF1 allocations. By Theorem 3.1, even an EF1 exchange path may
not exist, so an optimal such path does not necessarily exist either. We therefore focus
on instances in which the EF1 exchange graph is connected. It turns out that even for
such instances, an optimal EF1 exchange path still might not exist.

Theorem 3.2 There exists an instance with n = 2 agents satisfying the following
properties: the EF1 exchange graph is connected, but for some pair of EF1 allocations,
no optimal EF1 exchange path exists between them.

Proof Consider �s = (3, 3) and the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6
u1(g) 5 3 1 0 2 2
u2(g) 0 3 1 5 2 2

Let B be the allocation such that B1 = {g1, g2, g3} and B2 = {g4, g5, g6}—it can
be verified that B is EF1. We first prove that the EF1 exchange graph is connected
by constructing an EF1 exchange path between any EF1 allocation A and the EF1
allocation B. If g1 is not with agent 1 or g4 is not with agent 2 in A, perform any
exchange involving g1 and/or g4 so that g1 is now with agent 1 and g4 is now with
agent 2. After the exchange, for each i ∈ {1, 2}, agent i’s bundle is worth at least 5
to her, while any two goods in agent (3 − i)’s bundle are worth at most 5 to agent
i , so the allocation is EF1. Now, we can exchange the goods in {g2, g3, g5, g6} in an
arbitrary order to reach B after at most two more exchanges.

We next prove that an optimal EF1 exchange path between allocations C and D
does not exist, where C1 = {g2, g3, g4}, C2 = {g1, g5, g6}, D1 = {g4, g5, g6}, and
D2 = {g1, g2, g3}; it can be verified that both C and D are EF1, and the distance
between C and D is 2 (through exchanging g2 ↔ g5 and g3 ↔ g6). Suppose there
exists an optimal EF1 exchange path between C andD, and let C′ be the EF1 allocation
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between C and D on the exchange path. Since C and C′ are adjacent, one good from
{g2, g3} must be exchanged with one good from {g5, g6} in C to reach C′. However,
no matter which goods are exchanged with this restriction, there exists i ∈ {1, 2} such
that agent i’s bundle is worth 3 to her and agent (3 − i)’s bundle is worth 5 + 5 to
agent i , contradicting the EF1 property of C′. Therefore, no optimal EF1 exchange
path exists between C and D. ��

In light of these negative results, we turn our attention to special classes of utility
functions: identical utilities and binary utilities. We prove that for these two classes
of utility functions, the EF1 exchange graph is always connected, and moreover, an
optimal EF1 exchange path exists between every pair of EF1 allocations.

Theorem 3.3 Let an instance with n = 2 agents and identical utilities be given. Then,
the EF1 exchange graph is connected.Moreover, there exists an optimal EF1 exchange
path between any two EF1 allocations, and this path can be computed in polynomial
time.

Theorem 3.4 Let an instance with n = 2 agents and binary utilities be given. Then,
the EF1 exchange graph is connected.Moreover, there exists an optimal EF1 exchange
path between any two EF1 allocations, and this path can be computed in polynomial
time.

To establish these results, we shall prove by induction on t that two EF1 allocations
with distance t have an optimal EF1 exchange path between them. For the base case
t = 0, an optimal EF1 exchange path trivially exists. For the inductive step, let t ≥ 1
be given, and assume the inductive hypothesis that any two EF1 allocations with
distance t − 1 have an EF1 exchange path of length t − 1. Now, letA = (A1, A2) and
B = (B1, B2) be any two EF1 allocations with distance t ; this means that |A1 \ B1| =
|A2\B2| = t . Define X = A1\B1 = {x1, . . . , xt } andY = A2\B2 = {y1, . . . , yt }.We
show that there exist goods xk ∈ X and y� ∈ Y such that exchanging them inA leads to
an EF1 allocationA′ = (A′

1, A
′
2). If this is possible, then |A′

1\B1| = |A′
2\B2| = t−1,

which implies that the distance betweenA′ andB is t−1. By the inductive hypothesis,
there exists an EF1 exchange path betweenA′ and B of length t − 1. This means that
there exists an EF1 exchange path between A and B via A′ of length t , which is
optimal, hence completing the proof.

For the time complexity, for each pair of goods from X × Y , one can check in
polynomial time whether exchanging them leads to an EF1 allocation. Since there are
at most t2 pairs of goods to check at each step, and there are t steps in the path, the
running time claim follows.

Proof of Theorem 3.3 We follow the notation and inductive outline described before
this proof. Assume that the goods in X and Y are arranged in non-increasing order
of utilities, i.e., u(xi ) ≥ u(x j ) and u(yi ) ≥ u(y j ) whenever i < j . Denote �k =
u(yk) − u(xk) for all k ∈ {1, . . . , t}. Define A′

1 = (A1 ∪ {y1})\{x1} and A′
2 =

(A2 ∪ {x1})\{y1} to be the bundles after exchanging x1 and y1. If (A′
1, A

′
2) is EF1,

we are done by induction. Otherwise, we assume without loss of generality that in
the allocation (A′

1, A
′
2), agent 2 envies agent 1 by more than one good. Let x be a
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highest-utility good in A1—we may assume that x 	= xk for all k ≥ 2. Since (A1, A2)

is an EF1 allocation, we have u(x) ≥ γ := u(A1) − u(A2).
If both x = x1 and �1 < 0 are true, then

u(A′
2) = u(A2) − �1 > u(A2) ≥ u(A1 \ {x}) = u(A1 \ {x1}) = u(A′

1 \ {y1}),

which shows that agent 2 does not envy agent 1 by more than one good in (A′
1, A

′
2)—a

contradiction. Therefore, we must have x 	= x1 or �1 ≥ 0. If x 	= x1, then both x
and y1 belong to A′

1. If x = x1 and �1 ≥ 0, then y1 belongs to A′
1 and u(y1) ≥ u(x).

Hence, in either case, we have

max{u(x), u(y1)} < u(A′
1) − u(A′

2) = u(A1) − u(A2) + 2�1,

which implies

γ + 2�1 > max{u(x), u(y1)}. (1)

We claim that there exists k ∈ {2, . . . , t} such that

2�k ≤ u(x) − γ. (2)

Suppose on the contrary that 2�k > u(x)−γ for all k ∈ {2, . . . , t}. Since every good
in A1 has value at most u(x) and every good in B1 \ A1 has value at most u(y1), it
holds that every good in B1 has value at most max{u(x), u(y1)}. As (B1, B2) is an
EF1 allocation, we have

max{u(x), u(y1)} ≥ u(B1) − u(B2) = (u(A1) − u(A2)) +
t∑

k=1

2�k

= γ + 2�1 +
t∑

k=2

2�k

≥ γ + 2�1 +
t∑

k=2

(u(x) − γ ) ≥ γ + 2�1,

where the last inequality holds because u(x) ≥ γ and t ≥ 1. This contradicts (1).
Therefore, let k ∈ {2, . . . , t} be an index that satisfies (2). We now claim that we must
have

2�k ≥ max{u(x), u(y1)} − 2u(y1) − γ. (3)

Suppose on the contrary that 2�k < max{u(x), u(y1)} − 2u(y1) − γ . Then we have
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max{u(x), u(y1)} − 2u(y1) − γ > 2�k (by assumption)

≥ −2u(xk) (since u(yk) ≥ 0)

≥ −2u(x1), (since u(xk) ≤ u(x1))

which implies

γ + 2�1 < max{u(x), u(y1)},

contradicting (1). This establishes (3).
Combining inequalities (2) and (3), we have

−u(y1) ≤ max{u(x) − u(y1), 0} − u(y1) (by (3))

= max{u(x), u(y1)} − 2u(y1)

≤ γ + 2�k

≤ u(x), (by (2))

which implies γ + 2�k ∈ [−u(y1), u(x)]. We claim that exchanging xk and yk
results in an EF1 allocation, i.e., the allocation comprising A′′

1 = (A1 ∪ {yk})\{xk}
and A′′

2 = (A2 ∪ {xk})\{yk} is EF1. This is because

u(A′′
1) − u(A′′

2) = u(A1) − u(A2) + 2�k = γ + 2�k ∈ [−u(y1), u(x)],

where x ∈ A′′
1 and y1 ∈ A′′

2—note that x ( 	= xk) and y1 were not exchanged going
from A to A′′. This completes the induction and therefore the proof. ��
Proof of Theorem 3.4 We follow the notation and inductive outline described before
the proof of Theorem 3.3. Recall that X = A1\B1 = {x1, . . . , xt } and Y = A2\B2 =
{y1, . . . , yt }. Let Mi = {g ∈ M | ui (g) = 1} for i ∈ {1, 2}. Note that if |Ai ∩ Mi | >

|A3−i ∩ Mi |, then agent i does not envy agent (3− i) by more than one good after the
exchange of any pair of goods. Therefore, if |Ai ∩ Mi | > |A3−i ∩ Mi | is true for both
i ∈ {1, 2}, then exchanging any pair of goods from X and Y works.

Otherwise, suppose that |Ai ∩ Mi | ≤ |A3−i ∩ Mi | is true for some i ∈ {1, 2}, and
without loss of generality, assume that i = 1. We claim that |X ∩ M1| ≤ |Y ∩ M1|.
Suppose by way of contradiction that |X ∩ M1| > |Y ∩ M1|. Then,

|B1 ∩ M1| = |((A1 \ X) ∪ Y ) ∩ M1|
= |A1 ∩ M1| − |X ∩ M1| + |Y ∩ M1|
≤ |A2 ∩ M1| − 1

= |((B2 \ X) ∪ Y ) ∩ M1| − 1

= |B2 ∩ M1| − |X ∩ M1| + |Y ∩ M1| − 1 ≤ |B2 ∩ M1| − 2,

which means that agent 1 envies agent 2 by more than one good inB, contradicting the
assumption thatB is an EF1 allocation. Therefore, wemust have |X∩M1| ≤ |Y ∩M1|.
Thus, there exists a bijection φ : X → Y such that u1(x) ≤ u1(φ(x)) for all x ∈ X ;
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this can be obtained by ensuring that goods in X ∩M1 are mapped to goods in Y ∩M1.
Exchanging x and φ(x) in A for any x ∈ X will not make agent 1 envy agent 2 by
more than one good.

Now,we consider two cases for agent 2. If |A2∩M2| > |A1∩M2|, then agent 2 does
not envy agent 1 by more than one good after the exchange of any pair of goods. In
particular, we can exchange x and φ(x) for any x ∈ X , and we are done by induction.
In the other case, we have |A2 ∩ M2| ≤ |A1 ∩ M2|. We claim that there exists some
x ∈ X such that u2(φ(x)) ≤ u2(x). Suppose on the contrary that u2(φ(x)) > u2(x)
for all x ∈ X . This means that u2(x) = 0 for all x ∈ X and u2(y) = 1 for all y ∈ Y ,
and hence |Y ∩ M2| − |X ∩ M2| = t ≥ 1, where t = |X | = |Y |. Then, we have

|B2 ∩ M2| = |((A2 \ Y ) ∪ X) ∩ M2|
= |A2 ∩ M2| − |Y ∩ M2| + |X ∩ M2|
≤ |A1 ∩ M2| − 1

= |((B1 \ Y ) ∪ X) ∩ M2| − 1

= |B1 ∩ M2| − |Y ∩ M2| + |X ∩ M2| − 1 ≤ |B1 ∩ M2| − 2,

which means that agent 2 envies agent 1 by more than one good inB, contradicting the
assumption that B is an EF1 allocation. Thus, u2(φ(xk)) ≤ u2(xk) for some xk ∈ X .
In particular, exchanging xk and φ(xk) in A does not make agent 2 envy agent 1 by
more than one good. Hence, exchanging xk ∈ X and φ(xk) ∈ Y leads to an EF1
allocation, completing the induction and therefore the proof. ��

Since the EF1 exchange graph H is a subgraph of the exchange graph G, the
distance between two allocations (in G) cannot be greater than the length of the
shortest EF1 exchange path between the two allocations in H . In Theorems 3.3 and
3.4, the polynomial-time algorithms find EF1 exchange paths in H that are optimal in
the exchange graph G; such exchange paths must also be the shortest possible ones in
H .

4 Three or More Agents

In this section, we address the general case where there are more than two agents. We
shall see that this case is less tractable, both existentially and computationally.

Before we present our results on the EF1 exchange graph, we provide some insights
on finding the distance between two allocations regardless of EF1 considerations.
Observe that finding this distance for two agents is simple, as the distance equals the
number of goods from each of the two bundles that need to be exchanged. However,
this task is not so trivial for more agents—in fact, we shall show that it is NP-hard. To
this end, we draw an interesting connection between this distance and the maximum
number of disjoint cycles in a graph constructed based on the allocations. We start off
by detailing how to construct such a graph.

Let N , M , and �s be given, and let A = (A1, . . . , An) and B = (B1, . . . , Bn)

be two allocations with size vector �s. Define GA,B = (VA,B, EA,B) as a directed
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multigraph consisting of a set of vertices VA,B = N and a set of (directed) edges
EA,B = {e1, . . . , em}. For each k ∈ {1, . . . ,m}, the edge ek represents the good gk ,
and ek = (i, j) if and only if gk ∈ Ai ∩ Bj , i.e., gk is in agent i’s bundle in A and
in agent j’s bundle in B (possibly i = j). Note that for every vertex i , its indegree is
equal to its outdegree, which is equal to si , the number of goods in agent i’s bundle. Let
CA,B be the collection of partitions of EA,B into directed circuits.3 Note that CA,B is
non-empty—for example, a partition of EA,B into directed circuits can be constructed
in the following way: start with any vertex with an outdegree of at least 1, traverse
a path until some vertex v is encountered for the second time, remove the resulting
directed cycle from v to itself, and repeat on the remaining graph; the remaining graph
still satisfies the condition that every vertex has its indegree equal to its outdegree. Let
c∗
A,B = maxCA,B∈CA,B |CA,B| be the maximum cardinality of such a partition. Note
that a partition with the maximum cardinality must consist only of directed cycles;
otherwise, if it contains a circuit that passes through a vertex more than once, we can
break the circuit into two smaller circuits, contradicting the fact that this partition has
the maximum cardinality. We claim that the distance between allocations A and B is
m − c∗

A,B.
Proposition 4.1 Let N, M, and �s be given, and let A and B be two allocations with
size vector �s. Then, the distance between A and B is m − c∗

A,B.
Proof We have m ≥ c∗

A,B since every partition in CA,B is a partition of a set with
cardinality m, so m − c∗

A,B ≥ 0. We shall prove the result by strong induction on
m − c∗

A,B. For the base case, let A and B be given such that m − c∗
A,B = 0. This

means that there exists a partition CA,B ∈ CA,B such that |CA,B| = m = |EA,B|.
The only way that this is possible is when every edge in EA,B is a self-loop. Thus,
each good appears in the same agent’s bundle in A and B. This means that A = B,
and so the distance between A and B is 0 = m − c∗

A,B.
For the inductive hypothesis, suppose that there exists a non-negative integer p0

such that for all pairs of allocations A and B satisfying m − c∗
A,B = p for any

p ∈ {0, . . . , p0}, the distance between A and B is p. For the inductive step, consider
a pair of allocations A and B such that m − c∗

A,B = p0 + 1. We shall prove that the
distance between A and B is p0 + 1.

Wefirst prove that the distance betweenA andB is atmost p0+1. LetCA,B ∈ CA,B
be such that m − |CA,B| = p0 + 1 > 0. Since |EA,B| > |CA,B|, CA,B contains at
least one directed circuit of length at least two. For notational simplicity, let one such
directed circuit be v0 → v1 → · · · → v� = v0 for some � ≥ 2, where ek = (vk−1, vk)

for k ∈ {1, . . . , �} without loss of generality. FromA, exchange g�−1 (in agent v�−2’s
bundle) with g� (in agent v�−1’s bundle) to form the allocation A′. This removes the
directed circuit v0 → v1 → · · · → v� but introduces two new directed circuits:
v�−1 → v�−1 and v0 → v1 → · · · → v�−2 → v0. Thus, there exists a partition
CA′,B ∈ CA′,B such that |CA′,B| = |CA,B| + 1. This gives m − |CA′,B| = p0, and
thus m − c∗

A′,B ≤ p0. By the inductive hypothesis, the distance between A′ and B is
at most p0. Therefore, the distance betweenA and B (viaA′) is at most p0 +1, which
is m − c∗

A,B.

3 Recall that a directed circuit is a non-empty walk such that the first vertex and the last vertex coincide;
we consider a self-loop to be a directed circuit as well.
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Fig. 1 The exchange of goods
gx and gy . The edges ex and ey
correspond to the respective
goods in GA,B , while the edges
e′x and e′y correspond to those in
GA′,B

It remains to prove that the distance between A and B is at least p0 + 1. Suppose
on the contrary that the distance between A and B is at most p0. Since c∗

A,B < m,
A and B are distinct allocations. Consider a shortest path between A and B on the
exchange graph, and letA′ be the allocation on this path adjacent toA. By assumption,
the distance between A′ and B is p for some p < p0. By the inductive hypothesis,
m − c∗

A′,B = p. Let CA′,B ∈ CA′,B be such that |CA′,B| = m − p; by definition of
c∗
A′,B, CA′,B must consist only of directed cycles. Now, since A and A′ are adjacent
on the exchange graph, there exist distinct goods gx and gy such that exchanging
them in allocation A leads to the allocation A′. Let iA, iB, jA, jB ∈ N be such that
ex = (iA, iB) and ey = ( jA, jB) are edges in EA,B corresponding to goods gx and gy ,
respectively (some of iA, iB, jA, jB may coincide). Accordingly, we must have edges
e′
x = ( jA, iB) and e′

y = (iA, jB) in EA′,B (some of these edges may be self-loops).
See Fig. 1 for an illustration. We consider two cases; in each case, we will construct a
partition CA,B ∈ CA,B with at least |CA′,B| − 1 directed circuits.

• Case 1: e′
x and e′

y belong to different cycles in CA′,B. Let Dx = jA
e′
x−→ iB

···−→
jA and Dy = iA

e′
y−→ jB

···−→ iA be the cycles in CA′,B containing e′
x and e′

y ,

respectively. Define CA,B = (CA′,B\{Dx , Dy}) ∪ {iA ex−→ iB
···−→ jA

ey−→ jB
···−→

iA}, where iB ···−→ jA and jB
···−→ iA represent the corresponding (possibly empty)

trails in Dx and Dy , respectively. Note that |CA,B| = |CA′,B| − 1.

• Case 2: e′
x and e′

y belong to the same cycle in CA′,B. Let D = jA
e′
x−→ iB

···−→
iA

e′
y−→ jB

···−→ jA be the cycle in CA′,B containing e′
x and e′

y . Define CA,B =
(CA′,B\{D}) ∪ {iA ex−→ iB

···−→ iA, jA
ey−→ jB

···−→ jA}, where the ···−→ represents
the corresponding (possibly empty) trails in D. Note that |CA,B| = |CA′,B| + 1.

In either case, there exists a partitionCA,B ∈ CA,B of cardinality at least |CA′,B|−1 =
m − p − 1. This means that c∗

A,B ≥ m − p − 1, which implies that m − c∗
A,B ≤

p + 1 < p0 + 1. However, this contradicts the assumption that m − c∗
A,B = p0 + 1.

Therefore, the distance between A and B is at least p0 + 1, as desired. ��

Having found a correspondence for the distance between two allocations, a natural
question is whether there exists an efficient algorithm to compute this distance. It
turns out that computing this distance is an NP-hard problem, so no polynomial-time
algorithm exists unless P = NP. We show this via a series of reductions.
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We start by considering the decision problem Directed Triangle Partition:
given a directed graphwith no directed cycles of length 1 or 2, determinewhether there
is a partition of edges into triangles (i.e., directed cycles of length 3). This decision
problem is NP-hard via a reduction from 3SAT. The idea is similar to that used by
Holyer [10] in his proof of the corresponding result for undirected graphs; the details
are involved and can be found in “Appendix B”.

Lemma 4.2 Directed Triangle Partition is NP-hard.

We now use Lemma 4.2 to show that computing c∗
A,B is NP-hard.

Lemma 4.3 Given a directed graph such that for each vertex, its indegree and outde-
gree are equal, computing the maximum cardinality of a partition of the edges into
directed cycles is an NP-hard problem.

Proof The result follows from reducingDirected Triangle Partition to the prob-
lem of deciding whether there exists a partition of the edges of a directed graph into
|E |/3 directed cycles. Let G = (V , E) be an instance of Directed Triangle Par-

tition. If there is some vertex with unequal indegree and outdegree, then G cannot be
edge-partitioned into triangles. Otherwise, since G does not have cycles of length 1
or 2 (by definition of Directed Triangle Partition), the edges of G can be parti-
tioned into triangles if and only if the maximum cardinality of a partition of the edges
into directed cycles is |E |/3. Since Directed Triangle Partition is NP-hard by
Lemma 4.2, so is the problem of finding the maximum cardinality of a partition of the
edges into directed cycles. ��

Proposition 4.1 and Lemma 4.3 imply the following theorem.

Theorem 4.4 Finding the distance between two allocations is an NP-hard problem.

Proof Start with an instance G = (V , E) of the problem described in Lemma 4.3, and
denote V = {v1, . . . , vn}. We shall construct, in polynomial time, an instance of the
problem of finding the distance between two allocations. Let N = {1, . . . , n} be the set
of agents,M = {ge}e∈E be the set of goods, and si = |{e ∈ E | ∃ j ∈ N , e = (vi , v j )}|
be the size of agent i’s bundle for each i ∈ N . The initial allocationA = (A1, . . . , An)

and target allocation B = (B1, . . . , Bn) are such that Ai = {ge ∈ M | ∃ j ∈ N , e =
(vi , v j ) ∈ E} and Bi = {ge ∈ M | ∃ j ∈ N , e = (v j , vi ) ∈ E} for each i ∈ N . Note
that this induces the graph GA,B isomorphic to G. The distance between A and B is
|E | − c∗

A,B, by Proposition 4.1. Therefore, if we can find this distance, then we can
find c∗

A,B, solving the problem instance from Lemma 4.3. ��

4.1 General Utilities

We now discuss properties of the EF1 exchange graph. The following result demon-
strates that deciding whether an EF1 exchange path exists is a PSPACE-complete
problem.

Theorem 4.5 Deciding the existence of an EF1 exchange path between two EF1 allo-
cations is PSPACE-complete.

123



3666 Algorithmica (2024) 86:3653–3683

Proof First, we show membership in PSPACE—recall that PSPACE is the set of all
decision problems that can be solved by a deterministic polynomial-space Turing
machine. We can solve the problem non-deterministically by simply guessing an EF1
exchange path between the two EF1 allocations. Since the total number of allocations
is at most nm , if there exists an EF1 exchange path between the two allocations, then
there exists one with length at most nm ; such a path can be verified in polynomial
space (i.e., using a polynomial number of bits). This shows that the problem is in
NPSPACE, the set of all decision problems that can be solved by a non-deterministic
polynomial-space Turing machine. By Savitch’s Theorem, NPSPACE ⊆ PSPACE
[27], which implies that this problem is in PSPACE.

To prove that our problem is PSPACE-hard, we shall reduce the Perfect Match-

ing Reconfiguration problem for a balanced (undirected) bipartite graph to our
problem. Recall that the Perfect Matching Reconfiguration problem is the
task of deciding if two perfect matchings of a balanced bipartite graph can be reached
from each other via a sequence of flips, i.e., given perfect matchings W̃0 and W̃ of
a balanced bipartite graph G̃ = (Ṽ , Ẽ), whether there exists a sequence of perfect
matchings W̃0, W̃1, . . . , W̃t such that

• W̃t = W̃ , and
• for each z ∈ {1, . . . , t}, there exist edges ẽ1z , ẽ2z , ẽ3z , ẽ4z of G̃ such that W̃z−1\W̃z =

{̃e1z , ẽ3z }, W̃z\W̃z−1 = {̃e2z , ẽ4z }, and ẽ1z ẽ
2
z ẽ

3
z ẽ

4
z forms a cycle.

The operation from W̃z−1 to W̃z is called a flip, and we say that W̃z−1 and W̃z are
adjacent to each other. Perfect Matching Reconfiguration is known to be
PSPACE-hard [5]. Let |Ṽ | = 2v, and let the two independent sets of G̃ be P̃ =
{ p̃1, . . . , p̃v} and Q̃ = {̃q1, . . . , q̃v}. For each i ∈ {1, . . . , v}, let q̃ki ∈ Q̃ be the
vertex adjacent to p̃i in W̃0, and let q̃�i ∈ Q̃ be the vertex adjacent to p̃i in W̃ . We
shall show that this problem instance can be reduced to an instance of deciding the
existence of an EF1 exchange path between two EF1 allocations.

Define an instance of the EF1 exchange path problem as follows: let N =
{0, 1, . . . , v} be the set of agents, M = {p1, . . . , pv, q1, . . . , qv, r1, r2, r3, r4} be the
set of goods, and the utility function of each agent be

• u0(g) = 0 for all g ∈ M , and
• for i ∈ {1, . . . , v},

ui (g) =
⎧
⎨

⎩

3 if g ∈ {pi } ∪ {qk | { p̃i , q̃k} ∈ Ẽ};
2 if g ∈ {r1, r2, r3, r4};
0 otherwise.

In the initial allocation A0, agent 0 has the bundle {r1, r2, r3, r4} and agent i has the
bundle {pi , qki } for each i ∈ {1, . . . , v}. In the target allocation A, agent 0 again has
the bundle {r1, r2, r3, r4} and agent i has the bundle {pi , q�i } for each i ∈ {1, . . . , v}.
Observe that both allocations are EF1—agent 0 assigns zero utility to every bundle,
while each agent i ∈ {1, . . . , v} assigns a utility of 6 to her own bundle, a utility of at
most 6 to the bundle of every agent in {1, . . . , v} \ {i}, and a utility of 6 + 2 to agent
0’s bundle. Clearly, this instance can be constructed in polynomial time.
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Suppose first that there exists a sequence of adjacent perfect matchings from
W̃0 to W̃ . Then each flip from W̃z−1 to W̃z corresponds to an exchange in the
EF1 exchange path problem: if W̃z−1\W̃z = {{ p̃i , q̃k}, { p̃ j , q̃�}} and W̃z\W̃z−1 =
{{ p̃i , q̃�}, { p̃ j , q̃k}}, then exchange qk in agent i’s bundle with q� in agent j’s bundle.
The new allocation is also EF1—as before, agent 0 assigns zero utility to every bundle,
while each agent i ′ ∈ {1, . . . , v} assigns a utility of 6 to her own bundle, a utility of at
most 6 to the bundle of every agent in {1, . . . , v}\{i ′}, and a utility of 6 + 2 to agent
0’s bundle. By performing the exchanges according to the flips in sequence, we reach
the target allocation. Therefore, an EF1 exchange path exists.

Conversely, assume that an EF1 exchange path exists between the initial allo-
cation A0 and the target allocation A. Consider the sequence of EF1 allocations
A0,A1, . . . ,At = A. We show by induction that for every intermediate allocation
Az , every agent i ∈ {1, . . . , v} assigns a utility of 6 to her own bundle (consisting
of pi and qk for some k), and agent 0 retains {r1, r2, r3, r4}. The base case z = 0 is
trivial. For the inductive case, suppose that the statement is true for z − 1. If some
agent i ∈ {1, . . . , v} attempts to exchange one of her goods with a good from agent 0,
then agent i’s new bundle has utility 5 but agent 0’s new bundle has utility 6 + 3 for
agent i , which violates EF1. Therefore, agent i must exchange goods with agent j for
some j ∈ {1, . . . , v}. Note that agent 0’s bundle is worth 6 + 2 to agent i and j , so
agent i’s and j’s own bundles must be worth at least 6 to i and j respectively. If agent
i gives pi to agent j , then agent j’s new bundle consists of pi (worth zero to her) and
some q�, which is worth at most 3 to her—this violates EF1. By the same reasoning,
agent j cannot give p j to agent i . Therefore, theymust exchange qk in agent i’s bundle
with q� in agent j’s bundle. As agent i and j must have bundles worth at least 6 to
each of them, q� must be worth 3 to agent i and qk must be worth 3 to agent j . This
completes the induction.

As a result, the perfect matchings W̃z−1 (corresponding to Az−1) and W̃z (cor-
responding to Az) must be adjacent to each other for all z, where W̃z−1\W̃z =
{{ p̃i , q̃k}, { p̃ j , q̃�}} and W̃z\W̃z−1 = {{ p̃i , q̃�}, { p̃ j , q̃k}}. It follows that a sequence of
adjacent perfect matchings W̃0, W̃1, . . . , W̃t = W̃ indeed exists. This completes the
proof. ��

Regarding the existence of optimal EF1 exchange paths, we shall show later in
Theorem 4.10 that the corresponding decision problem is NP-hard even for four agents
with identical utilities.

4.2 Identical Binary Utilities

We now consider the most restrictive class of utility functions in our paper: those that
are identical and binary. We show that the EF1 exchange graph is connected for any
number of agents with such utility functions.

Theorem 4.6 Let an instance with n ≥ 2 agents and identical binary utility functions
be given. Then, the EF1 exchange graph is connected. Moreover, an EF1 exchange
path between any two allocations can be found in polynomial time.
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Proof LetA and B be two EF1 allocations. Since every good is worth either 1 or 0 to
every agent, every agent’s bundle inA andBmust have a utility of either �u(M)/n� or
�u(M)/n� + 1 (otherwise, the gap between the utilities of some two agents’ bundles
is at least 2, and the corresponding allocation is not EF1). Let N ′ be the set of agents
whose bundles in A and B have different utilities. Note that half of the agents in
N ′ have bundles worth �u(M)/n� in A and �u(M)/n� + 1 in B; the other half have
bundles worth �u(M)/n� + 1 in A and �u(M)/n� in B. If N ′ 	= ∅, let agent i ∈ N ′
be an agent with a bundle worth �u(M)/n� inA, and let gi be a good with utility 0 in
Ai—this good exists because agent i has at least �u(M)/n� + 1 goods in her bundle
(due to Bi ’s utility of �u(M)/n� + 1) but only has utility �u(M)/n� in Ai . Let agent
j ∈ N ′ be an agent with a bundle worth �u(M)/n�+1 inA, and let g j be a good with
utility 1 in A j—this good exists because A j has utility at least 1. Exchange gi with
g j ; it can be verified that the resulting allocation is EF1. As this exchange reduces the
size of the set N ′ by two, we can repeatedly make such exchanges between two agents
in N ′ until N ′ = ∅. Note that such exchanges can be performed in polynomial time.

At this point, we have shown that there exists an EF1 allocationA′ such that an EF1
exchange path exists betweenA andA′, and for every agent i , her bundles inA′ andB
have the same utility. Define the item graph GA′,B as in the beginning of Sect. 4, and
consider its subgraph with only the edges representing the goods with utility 1. For
each agent, the indegree and the outdegree of the corresponding vertex in this subgraph
are equal, so we can perform exchanges to ‘resolve’ these edges. Specifically, suppose
there is an edge ex = (i, j) corresponding to a good gx , where i 	= j . By the degree
condition, there must exist another edge ey = ( j, k) corresponding to a good gy ,
where j 	= k but possibly k = i . We let agents i and j exchange gx and gy , so gx is
now with its correct owner, agent j . Hence, at least one more good goes to the correct
agent after the exchange. This exchange process can be performed in polynomial time,
and no agent’s utility changes during the process, which means that the intermediate
allocations are all EF1. Similarly, if we consider the subgraph with only the edges
representing the goods with utility 0, we can perform exchanges to resolve these
edges as well. Therefore, there exists an EF1 exchange path from A′ to B, and thus
an EF1 exchange path fromA to B, and this path can be found in polynomial time. ��

In spite of this positive result, the polynomial-time algorithm described in The-
orem 4.6 does not necessarily find an optimal EF1 exchange path between the two
allocations. In fact, even for the special case where the EF1 exchange graph H and the
exchange graph G coincide (e.g., when every agent assigns zero utility to every good,
so every allocation is EF1), it is NP-hard to compute an optimal EF1 exchange path
by Theorem 4.4, regardless of whether optimality refers to the length of the shortest
path in G or in H . Hence, a polynomial-time algorithm for this task does not exist
unless P = NP. Moreover, we show next that, somewhat surprisingly, an optimal EF1
exchange path (with respect to G) is not guaranteed to exist even for identical binary
utilities.

Theorem 4.7 For each n ≥ 3, there exists an instance with n agents with identical
binary utility functions satisfying the following properties: the EF1 exchange graph is
connected, but for some pair of EF1 allocations, no optimal EF1 exchange path exists
between them.
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Proof For n = 3 agents, consider �s = (2, 2, 2) and the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6
u(g) 1 1 1 0 0 0

Note that the EF1 exchange graph is connected by Theorem 4.6. We prove that an
optimal EF1 exchange path between A and B does not exist, where A1 = {g2, g6},
A2 = {g3, g4}, A3 = {g1, g5}, and Bi = {gi , gi+3} for i ∈ {1, 2, 3}—it can be verified
that bothA andB are EF1, and the distance betweenA andB is 3 (through exchanging
g1 ↔ g6, g2 ↔ g4, and g3 ↔ g5). Consider any EF1 exchange path between A and
B, and let A′ be the EF1 allocation adjacent to A on the exchange path. If a valuable
good (g1, g2, or g3) is exchanged with a non-valuable good (g4, g5, or g6) from A to
reachA′, then one agent has utility 0 and another agent has utility 2, which means that
A′ is not EF1. Therefore, the only exchanges possible from A are between valuable
goods or between non-valuable goods. However, any of these exchanges causes at
most one good to go to the correct bundle according to B, so there are at least five
goods in A′ in the wrong bundle according to B. As any exchange of goods reduces
the number of goods in the wrong bundle by at most two, the distance betweenA′ and
B is at least 3. This means that the distance between A and B is at least 4. It follows
that no optimal EF1 exchange path exists between A and B.

For n > 3 agents, simply add n − 3 dummy agents who have the same utility
function as the three original agents and have empty bundles. ��

4.3 Binary Utilities

We saw in Theorem 4.6 that the EF1 exchange graph is always connected for any
number of agents with identical binary utilities. Now, we consider the case where the
agents have binary utilities which may differ between agents. It turns out that the EF1
exchange graph is not necessarily connected in this case, even when there are three
agents. This also provides a contrast to the case of two agents (Theorem 3.4).

Theorem 4.8 For each n ≥ 3, there exists an instance with n agents with binary utility
functions such that the EF1 exchange graph is disconnected.

Proof For n = 3 agents, consider the utility of the goods as follows:

g g1 g2 g3 g4
u1(g) 1 0 1 0
u2(g) 1 0 1 0
u3(g) 0 1 1 0

Let A and B be given such that A1 = {g1, g2}, A2 = {g3, g4}, B1 = {g3, g4},
B2 = {g1, g2}, and A3 = B3 = ∅—it can be verified that both A and B are EF1.
Consider any EF1 exchange path between A and B, and let A′ be the EF1 allocation
adjacent toA on the exchange path. We claim thatA′ cannot exist. The only possible
exchanges fromA are gi ↔ g5−i or gi ↔ gi+2 for some i ∈ {1, 2}. If gi is exchanged
with g5−i , then agent i’s bundle has zero utility from agent i’s perspective while agent
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(3− i)’s bundle has utility 2 from agent i’s perspective, so agent i envies agent (3− i)
by more than one good. On the other hand, if gi is exchanged with gi+2, then agent
i’s bundle has utility 2 from agent 3’s perspective, and since agent 3 has an empty
bundle, agent 3 envies agent i by more than one good. Therefore, A′ does not exist,
which contradicts the assumption that the path is an EF1 exchange path. It follows
that no EF1 exchange path exists between A and B.

For n > 3 agents, simply add dummy agents who assign zero value to every good
and have empty bundles. ��

4.4 Identical Utilities

Let us now consider the case where the utilities are identical across agents, though
they need not be binary. As with the case of binary utilities, there are instances in
which the EF1 exchange graph is not connected even for three agents.

Theorem 4.9 For each n ≥ 3, there exists an instance with n agents with identical
utility functions such that the EF1 exchange graph is disconnected.

Proof For n = 3 agents, consider the utility of the goods as follows:

g g1 g2 g3 g4 g5 g6 g7
u(g) 4 3 1 4 2 2 4

Let A and B be given such that A1 = {g1, g2, g3}, A2 = {g4, g5, g6}, B1 =
{g1, g5, g6}, B2 = {g2, g3, g4}, and A3 = B3 = {g7}. It can be verified that both
A and B are EF1. Consider any exchange path from A to B. At some point, a good
g ∈ {g2, g3, g5, g6} has to be exchanged, but this will inevitably cause agent 3 to
envy agent 1 or agent 2 by more than one good, so the exchange path cannot be EF1.
Therefore, no EF1 exchange path exists between A and B.

For n > 3 agents, simply add n − 3 agents who have the same utility function as
the three original agents and n− 3 goods with value 4 each, and allocate each of these
goods to one of these n − 3 agents in both A and B. ��

We end this sectionwith a result that determiningwhether an optimal EF1 exchange
path exists between two allocations is NP-hard even for four agents with identical
valuations. This can be shown via a reduction from the NP-hard problem Partition.

Theorem 4.10 Deciding the existence of an optimal EF1 exchange path between two
EF1 allocations is NP-hard, even for n = 4 agents with identical utility functions.

Proof We shall reduce the NP-hard problem Partition to this problem. Recall that
the Partition problem is the task of deciding whether a multiset T = {t1, . . . , tk} of
positive integers can be partitioned into two subsets such that the sum of the integers
in one subset is equal to that in the other subset. Let the sum of all the integers in T
be 2S.

Define an instance of the EF1 exchange path problem with n = 4 agents and the
set of goods M = {a0, a1, . . . , ak, b0, b1, . . . , bk, c1, c2, d1, d2}. The utility of each
good is defined as follows:
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• u(a0) = u(b0) = u(c1) = 2S,
• u(d1) = u(d2) = S,
• u(ai ) = ti for all i ∈ {1, . . . , k},
• u(bi ) = u(c2) = 0 for all i ∈ {1, . . . , k}.
The initial allocation A = (A1, A2, A3, A4) and the target allocation B =

(B1, B2, B3, B4) are given by A1 = {a0, a1, . . . , ak}, A2 = {b0, b1, . . . , bk}, B1 =
{a0, b1, . . . , bk}, B2 = {b0, a1, . . . , ak}, A3 = B4 = {c1, c2}, and A4 = B3 =
{d1, d2}—it can be verified that both A and B are EF1. Note that this instance can be
constructed in polynomial time, and the distance between A and B is k + 2.

First, suppose that T can be partitioned into two subsets of sum S each, say
{ti1, . . . , ti�} has sum S. We perform the following exchanges starting from A:

• First, exchange {ai1 , . . . , ai�}with {bi1 , . . . , bi�} pair-by-pair. At this point, agents
1 and 2 have bundles worth 3S each, and agents 3 and 4 have bundles worth 2S
each.

• Next, exchange c1 with d1, and exchange c2 with d2.
• Finally, exchange {a1, . . . , ak} \ {ai1, . . . , ai�} with {b1, . . . , bk} \ {bi1 , . . . , bi�}
pair-by-pair.

The allocation resulting from this sequence of exchanges is B. It can be verified that
this exchange path has length k + 2 and every intermediate allocation is EF1. Hence,
there exists an optimal EF1 exchange path between A and B.

Conversely, suppose that there exists an optimal EF1 exchange path between A
and B. The only exchanges possible are ai ↔ b j for some i, j ∈ {1, . . . , k} and
ci ↔ d j for some i, j ∈ {1, 2}. In particular, at some point, ci must be exchanged
with d j for the first time for some i, j ∈ {1, 2}. Consider the allocation following this
exchange. One of agents 3 and 4 now has utility only S. By assumption, this allocation
is EF1, so this agent does not envy agent 1 and agent 2. Removing the highest-utility
good from agent 1’s and agent 2’s bundle (i.e., a0 and b0), the utility of each of the
remaining bundles must be at most S. The only way this is possible is that {a1, . . . , ak}
can be partitioned into two subsets such that the utility of each subset is exactly S, and
each of agents 1 and 2 receives exactly one of those subsets. Correspondingly, this
shows that T can be partitioned into two subsets of sum S each. ��

5 Conclusion and FutureWork

In this paper, we have initiated the study of reachability problems in fair division
by investigating the connectivity of the EF1 exchange graph and the optimality of
EF1 exchange paths. We showed that even for two agents, an EF1 exchange path
between two given EF1 allocations does not necessarily exist. On the positive side,
such a path always exists if both agents have identical or binary utility functions—in
these cases, we can also ensure an optimal path regardless of EF1 considerations, and
the path can be found in polynomial time. For three or more agents, however, the
problem becomes much less tractable, both in terms of existence and computation.
In particular, we proved that finding the smallest number of exchanges between two
allocations is NP-hard even if we were to ignore the EF1 constraints, and deciding
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whether an EF1 exchange path between two allocations exists is PSPACE-complete.
Moreover, the existence of an EF1 exchange path cannot be guaranteed even if the
utilities are identical or binary, although such a guarantee is possible if the utilities
are identical and binary.

Our work leaves several questions and directions for future research. Firstly, while
determining the existence of an EF1 exchange path between two given allocations is
PSPACE-complete in general, an intriguing question is whether this can be done in
polynomial time for two agents. In addition, for the negative results obtained in our
paper, one could ask whether an (optimal or otherwise) exchange path between EF1
allocations exists if we allow the intermediate allocations to be envy-free up to k goods
(EFk) for some small k > 1. Extending our results to fairness notions other than EF1
is also a meaningful direction. Finally, in addition to (or instead of) exchanging goods
between agents, one may also consider the setting where an agent transfers one good
to another agent in each operation—in this case, the size of the allocation does not
need to be fixed. In “Appendix A”, we present some results concerning this setting,
which differs from the exchange-only setting in interesting ways.

6 Appendix

A. Transfers

Thus far, we have considered the operation where two agents exchange a pair of goods
with each other. In this appendix, we examine the scenario where in each operation, an
agent is allowed to transfer a good from her bundle to another agent’s bundle without
receiving a good from the latter agent in return. This allows more flexibility in the
allocation size vector, as it is now possible for this vector to change after each (transfer)
operation.

First, we consider the setting where the agents are allowed to transfer goods one at
a time, but not allowed to exchange goods. We define (EF1) transfer graph and (EF1)
transfer path analogously to the corresponding exchange definitions in Sect. 2. Note
that for transfer graphs, the set of vertices consists of all allocations, rather than only
those with a certain size vector. It turns out that this setting is even more restricted
than the exchange-only setting.

Theorem A.1 For each n ≥ 2, there exists an instance with n agents with identical
binary utility functions such that the EF1 transfer graph is disconnected.

Proof For n agents, consider 2n goods, each with utility 1 to every agent. In the
initial allocation each agent has two goods each, while in the target allocation agent
1’s and 2’s bundles are exchanged from the initial allocation. As the only operation
available is a transfer operation, some agent will have three goods and another agent
will have only one good after a transfer, so the allocation cannot be EF1. ��

In light of the above negative result, it is more interesting to allow exchange oper-
ations on top of transfer operations. We define (EF1) exchange-and-transfer graph
and (EF1) exchange-and-transfer path analogously to the transfer versions. Likewise,
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the set of vertices consists of all allocations, rather than only those with a certain size
vector.

Having the additional transfer operation on top of the exchange operation allows
more flexibility in reaching other allocations. In general, a transfer in the exchange-
and-transfer setting is equivalent to supplementing every agent with sufficiently many
dummy goods (with zero utility) in the exchange-only setting and exchanging a normal
good with a dummy good. This allows us to achieve the same positive results for
connectivity as in the exchange-only setting for two agents with identical or binary
utilities, and for any number of agents with identical binary utilities (Theorems 3.3,
3.4, and 4.6).

Theorem A.2 Let an instance with n = 2 agents and identical utilities be given. Then,
the EF1 exchange-and-transfer graph is connected. Moreover, an EF1 exchange-and-
transfer path between any two allocations can be found in polynomial time.

Theorem A.3 Let an instance with n = 2 agents and binary utilities be given. Then,
the EF1 exchange-and-transfer graph is connected. Moreover, an EF1 exchange-and-
transfer path between any two allocations can be found in polynomial time.

Theorem A.4 Let an instance with n ≥ 2 agents and identical binary utilities be
given. Then, the EF1 exchange-and-transfer graph is connected. Moreover, an EF1
exchange-and-transfer path between any two allocations can be found in polynomial
time.

Weshall prove TheoremA.4; the other two results can be shown in a similarmanner.

Proof of TheoremA.4 Let an instance in the exchange-and-transfer setting be given
and let A and B be the initial and target EF1 allocations, respectively. Consider the
following instance in the exchange-only setting: augment the set of goodswith (n−1)m
dummygoods yielding zero utility to all agents, and let the size vector be (s′

1, . . . , s
′
n) =

(m, . . . ,m), where m denotes the number of goods in the original instance. For the
initial and target allocationsA′ andB′ in the exchange-only setting, each agent receives
the same set of goods as she had in A and B, respectively, together with a number of
dummy goods so that her bundle has exactly m goods. Note that the utility functions
remain identical and binary in the new instance.

By Theorem 4.6, there exists an EF1 exchange path between A′ and B′. Take one
such EF1 exchange path, and consider each operation. If two non-dummy goods are
exchanged, we exchange the same two goods in the original exchange-and-transfer
instance. If one non-dummy good and one dummy good are exchanged, we transfer the
non-dummy good in the original instance to the other agent involved in the exchange.
Else, if two dummy goods are exchanged, we do nothing. Since the dummy goods do
not play any role in determiningwhether an allocation is EF1 in the new instance, there
exists an EF1 exchange-and-transfer path between A and B in the original instance.
The polynomial time claim follows because, by Theorem 4.6, an EF1 exchange path
in the new instance can be found in polynomial time. ��

In addition to admitting analogous results, the exchange-and-transfer setting some-
times allows us to derive positive results which cannot be attained in the exchange-only
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setting. For instance, we show that the counterexample in Theorem 4.9 is no longer
applicable in the exchange-and-transfer context. Recall that the counterexample is for
three agents with identical utilities having goods with the following utilities:

Agent 1: 4, 3, 1
Agent 2: 4, 2, 2
Agent 3: 4

and the target allocation is to exchange {3, 1} with {2, 2}, where we refer to a good
by its utility. First, the good with utility 3 can be transferred from agent 1 to agent
3. Next, the goods with utilities 1 and 2 can be exchanged. After that, the remaining
good with utility 2 in agent 2’s bundle can be transferred to agent 1. Finally, the good
with utility 3 in agent 3’s bundle can be transferred to agent 2.

In fact, we now state and prove a positive result which is more general than this
observation.

Theorem A.5 Suppose three agents with identical utilities have goods with the follow-
ing utilities:

Agent 1: a0, a1, a2, . . ., ak
Agent 2: b0, b1, b2, . . ., bk
Agent 3: c0

for some positive integer k, where min{a0, b0, c0} ≥ max{∑k
�=1 a�,

∑k
�=1 b�}. Then,

there exists an EF1 exchange-and-transfer path of length k+2 between this allocation
and the allocation with {a1, . . . , ak} and {b1, . . . , bk} exchanged.

In order to prove the result, we shall make use of the following three lemmas in the
exchange-only context.

Lemma A.6 Suppose three agents with identical utilities have goods with the following
utilities:

Agent 1: 1, a1, a2, . . ., ak
Agent 2: 1, b1, b2, . . ., bk
Agent 3: 1, c, 0, . . ., 0

for some positive integer k, where

• c ≤ 1,
• c ≥ a1 ≥ · · · ≥ ak,
• c ≥ b1 ≥ · · · ≥ bk,
• ∑k

�=1 a� ≤ 1, and
• ∑k

�=1 b� ≤ 1.

Then, there exists an EF1 exchange path of length k between this allocation and the
allocation with {a1, . . . , ak} and {b1, . . . , bk} exchanged (i.e., the exchange path is
optimal).

Proof We shall refer to a good by its utility. Note that the initial and target allocations
are EF1. It suffices to show that at each step, there exists some � such that a� in agent 1’s
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bundle and b� in agent 2’s bundle can be exchanged while keeping the allocation EF1.
Then, the EF1 exchange path has length k and is hence optimal.

Suppose that there exists a subset L of K = {1, 2, . . . , k} such that {a� | � ∈ L}
and {b� | � ∈ L} have already been exchanged from the initial allocation. Then, the
current EF1 allocation is

Agent 1: 1, {b� | � ∈ L}, {a j | j ∈ K \ L}
Agent 2: 1, {a� | � ∈ L}, {b j | j ∈ K \ L}
Agent 3: 1, c, 0, . . . , 0.

We claim that there exists some j ∈ K \ L such that exchanging a j and b j still
maintains EF1. If a j ≥ b j for all j ∈ K \ L , then repeatedly exchanging a j with
b j will cause the utility of agent 1’s bundle to monotonically decrease and that of
agent 2’s bundle to monotonically increase, and since the target allocation is EF1, all
intermediate allocations are also EF1. A similar argument holds if a j < b j for all
j ∈ K\L . Therefore, assume that there exists a partition of K \ L into non-empty
sets X and Y such that ax ≥ bx for all x ∈ X and ay < by for all y ∈ Y . Let A and
B be the utilities of agent 1’s bundle and agent 2’s bundle in the current allocation,
respectively, and assume without loss of generality that A ≥ B. We show that some
j ∈ X or j ∈ Y works.
If exchanging ax and bx leads to an EF1 allocation for some x ∈ X , thenwe perform

the exchange. Similarly, if exchanging ay and by leads to an EF1 allocation for some
y ∈ Y , then we perform the exchange. Otherwise, assume that each of these exchanges
does not lead to an EF1 allocation. Consider exchanging ax and bx for some x ∈ X .
By assumption, the new allocation is not EF1. Note that each of agents 1 and 2 has a
bundle with utility at least 1, so none of them envies agent 3 by more than one good.
Since agent 2’s bundle is the only bundle to increase in value, some agent envies agent
2 by more than one good. Now, A + B = (1 + ∑

�∈K a�) + (1 + ∑
�∈K b�) ≤ 4 and

A ≥ B, which implies B ≤ 2. Agent 2’s new bundle without the most valuable good
would have utility at most (B − 1) + ax − bx ≤ 1 + ax − 0 ≤ 1 + c; note that 1 + c
is the utility of agent 3’s bundle. Hence, agent 3 does not envy agent 2 by more than
one good, and so agent 1 must be the only agent who envies agent 2 by more than one
good. This means that, for each x ∈ X , exchanging ax and bx leads to agent 1 envying
agent 2 by more than one good.

It follows that for every x ∈ X , we have A − (ax − bx ) < (B − 1) + (ax − bx ),
which implies 2(ax − bx ) > A− B + 1. Since A ≥ B and bx ≥ 0, we have ax > 0.5.
This means that c ≥ ax > 0.5, and agent 3’s bundle has utility at least 1.5.

Similarly, consider exchanging ay and by for some y ∈ Y . Since agent 1’s bundle
is the only bundle to increase in value, some agent envies agent 1 by more than one
good. If agent 3 envies agent 1 by more than one good, then agent 3’s bundle having
utility at least 1.5 implies that agent 1’s bundle, including the good with utility 1, now
has utility more than 2.5, i.e., A + (by − ay) > 2.5. Agent 2’s bundle now has utility
(A + B) − (A + (by − ay)) < 4 − 2.5 = 1.5, which is less than the utility of agent
3’s bundle, so agent 2 envies agent 1 by more than one good as well. We conclude
that exchanging ay and by leads to agent 2 envying agent 1 by more than one good
for each y ∈ Y .
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So far, we have shown that if for every j ∈ K \ L exchanging a j and b j does not
result in an EF1 allocation, then for each j ∈ K \ L , exchanging a j and b j will result
in agent 1 envying agent 2 by more than one good or agent 2 envying agent 1 by more
than one good. But this contradicts (the outline4 of) the proof of Theorem 3.3 that
there always exists j ∈ K\L such that exchanging a j and b j leads to neither agent 1
nor agent 2 envying each other by more than one good (ignoring agent 3). Therefore,
one of these pairs of goods can be exchanged to give an EF1 allocation. ��
Lemma A.7 Suppose three agents with identical utilities have goods with the following
utilities:

Agent 1: 1, a1, a2, . . ., ak
Agent 2: 1, b1, b2, . . ., bk
Agent 3: 1, 0, 0, . . ., 0

for some positive integer k, where
∑k

�=1 a� ≤ 1 and
∑k

�=1 b� ≤ 1. Then, there exists
an EF1 exchange path of length k + 2 between this allocation and the allocation with
{a1, . . . , ak} and {b1, . . . , bk} exchanged.
Proof Note that the initial and target allocations are EF1. Without loss of generality,
we may assume that a1 ≥ · · · ≥ ak and b1 ≥ · · · ≥ bk , and moreover that a1 ≥ b1.
We refer to a good by its utility and to a good with utility 0 as a dummy good. First,
exchange a1 with a dummy good in agent 3’s bundle. Note that the resulting allocation
is EF1 and satisfies the assumptions of Lemma A.6. Hence, by Lemma A.6, we can
exchange {a2, . . . , ak, 0} and {b1, . . . , bk} in k steps while maintaining EF1. Finally,
exchange a1 with agent 3’s original dummy good in agent 2’s bundle. We have arrived
at the target allocation, and the total number of exchanges is k + 2. ��
Lemma A.8 Suppose three agents with identical utilities have goods with the following
utilities:

Agent 1: a0, a1, a2, . . ., ak
Agent 2: b0, b1, b2, . . ., bk
Agent 3: c0, 0, 0, . . ., 0

for some positive integer k, where min{a0, b0, c0} ≥ max{∑k
�=1 a�,

∑k
�=1 b�}. Then,

there exists an EF1 exchange path of length k + 2 between this allocation and the
allocation with {a1, . . . , ak} and {b1, . . . , bk} exchanged.
Proof We refer to a good by its utility. Note that the initial and target allocations are
EF1. We shall describe an exchange path such that a0, b0, and c0 are not moved. Note
that a0, b0, and c0 are the three most valuable goods among all the goods, and without
loss of generality, assume that they all have positive value. Letm0 = min{a0, b0, c0} >

0. First, replace a0, b0, and c0 by m0 each. For an EF1 allocation where these goods
remain with the respective agents (after the replacement), the same allocation but
with m0 replaced back by a0, b0, and c0 respectively is also EF1. Next, scale all the
utilities by a factor of 1/m0—note that scaling by a positive factor does not affect

4 See the paragraph after the statement of Theorem 3.4.
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the EF1 property of the allocations. Now, the initial allocation follows the setting in
Lemma A.7. Hence, by Lemma A.7, we can exchange {a1, . . . , ak} and {b1, . . . , bk}
in k + 2 steps while maintaining EF1. Finally, scale the utilities by a factor of m0, and
replace m0 with a0, b0, and c0 respectively to get the desired exchange path. ��

We are now ready to prove Theorem A.5.

Proof of TheoremA.5 Consider the scenario where agent 3 is given k additional goods
with zero utility. This is exactly the scenario in Lemma A.8, which means that there is
an EF1 exchange path of length k + 2 between this allocation and the allocation with
{a1, . . . , ak} and {b1, . . . , bk} exchanged. Consider this EF1 exchange path.Whenever
an exchange is performed which involves one of the additional zero-utility goods in
agent 3’s bundle, it can be thought of as a transfer of a good in the original scenario
where agent 3 did not receive the zero-utility goods. This means that there is an EF1
exchange-and-transfer path of length k + 2. ��

Finally, we remark that the counterexample in Theorem 4.8 for binary utilities is
likewise no longer applicable in the exchange-and-transfer setting. On the other hand,
the example in Theorem 3.1 for two agents with general utilities is still a counterex-
ample when viewed in this setting.

B. Proof of Lemma 4.2

We prove Lemma 4.2 by reducing the well-known NP-hard problem 3SAT to
Directed Triangle Partition.

• 3SAT. Given a set of variables Y = {y1, . . . , yq} and a set of clauses C =
{c1, . . . , cr } where each clause is a disjunction of three literals, i.e., c j = � j,1 ∨
� j,2 ∨ � j,3, and each literal is either a variable (i.e., � j,k = yi ) or its negation (i.e.,
� j,k = yi ), determine whether there exists an assignment to the variables in Y
such that every clause in C is satisfied.

• Directed Triangle Partition. Given a directed graph G = (V , E) with no
directed cycles of length 1 or 2, determine whether there is a partition of the edges
into triangles (i.e., directed cycles of length 3).

The reduction works by constructing a graph for each variable and each literal that
can be edge-partitioned into triangles in exactly two ways—one representing “true”
and the other representing “false”—and joining these graphs together in special ways
to restrict the truth values that they represent. This idea is similar to that used byHolyer
[10] in his proof of the corresponding result for undirected graphs.

Define the directed graph Hp = (Vp, Ep) for each positive integer p as follows:

Vp = {(a1, a2, a3) ∈ Z
3
p | a1 + a2 + a3 ≡ 0},

Ep = {(a1, a2, a3) → (b1, b2, b3) | ∃(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} such that
bi ≡ ai , b j ≡ a j + 1, and bk ≡ ak − 1},

where all equivalences are modulo p. There are only two types of triangles in Hp:
T -triangles of the form (a1, a2, a3) → (a1+1, a2 −1, a3) → (a1+1, a2, a3−1) →
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Fig. 2 The graph H4 and an example of a T -triangle and an F-triangle

Fig. 3 A T -patch and an
F-patch. The center T -triangle
and F-triangle are denoted by
bold lines, and the exteriors are
denoted by non-bold solid lines.
The dotted lines are not part of
the patches

(a1, a2, a3), and F-triangles of the form (a1, a2, a3) → (a1 + 1, a2 − 1, a3) →
(a1, a2−1, a3+1) → (a1, a2, a3). See Fig. 2 for an illustration. Note that each vertex
has an indegree and an outdegree of 3.

Two triangles are called neighbors if they share a common edge. A patch is a
triangle together with its neighbors. The set of edges of the triangle is called the center
of the patch, and the set of edges of a patch that do not belong to the center is called
the exterior of the patch. A T -patch (resp., F-patch) is a patch in which the center is
a T -triangle (resp., F-triangle). See Fig. 3 for an illustration. Two patches P1 and P2

are non-interfering if the distance between any vertex in P1 and any vertex in P2 is at
least (say) 10 on Hp, where distance is measured along a shortest path. We shall also
require patches to be of distance at least 10 from the vertex 0 = (0, 0, 0).

Consider the graph Hp with non-interfering patches and with some edges of the
patches removed. Suppose there is an edge-partition of the resulting graph into trian-
gles. The vertex 0 has an indegree and an outdegree of 3, so any edge-partition into
triangles requires 0 to belong to exactly three triangles. The only ways to have these
three triangles are when they are all T -triangles or all F-triangles. Then, all neigh-
boring vertices to 0 belong to triangles of the same type. By a similar argument, the
neighboring vertices must each belong to exactly three triangles of the same type. This
cascades through the whole graph (except possibly at the patches), and therefore, we
see that an edge-partition of Hp into triangles necessarily consists only of T -triangles
or only of F-triangles (except possibly at the patches).

Let H1
p , H

2
p , and H3

p be three copies of Hp, and let Pk
F be an F-patch on Hk

p for each
k ∈ {1, 2, 3}. We say that we apply an F-F-F join on (H1

p, H
2
p, H

3
p) if we remove
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Fig. 4 An F-F-F join on H1
p (solid lines), H2

p (dashed lines) and H3
p (dotted lines). All three graphs share

the exterior of the patch PF (bold lines)

the patches P1
F , P

2
F , and P3

F on the respective copies and replace them by one copy
of the vertices of an F-patch PF and one copy of the exterior of PF . See Fig. 4 for an
illustration. We claim that any edge-partition of this new graph into triangles results in
exactly one of H1

p , H
2
p , and H3

p being partitioned into F-triangles (and the other two
into T -triangles). To see this, consider an edge x = a → b belonging to the exterior
of PF . Since x belongs to a triangle, we consider the candidates for the third vertex of
the triangle. There are only three such candidates: v1, v2, and v3, which are parallel
vertices on H1

p , H
2
p , and H3

p , respectively.
Assume without loss of generality that the triangle is a → b → v1 → a (note that

this is an F-triangle), and consider the triangles containing the vertex v1. Since v1
already has an F-triangle, the other triangles containing v1 can only be F-triangles,
and the cascading effect implies that 0 in H1

p , and all other vertices in H1
p (except

possibly at PF ), belong to F-triangles. Note that this implies that each edge in the
exterior of PF is combined with edges in H1

p to form F-triangles. On the other hand,
the indegree and the outdegree of both v2 and v3 are 3, so there must be exactly three
triangles containing v2 and v3, respectively. Since x is used by the edges b → v1 and
v1 → a in H1

p , it cannot be used by the edges b → v2 and v2 → a in H2
p or b → v3

and v3 → a in H3
p to form the respective F-triangles. As such, the triangles containing

v2 and v3 must all be T -triangles, and the cascading effect implies that 0 in H2
p and

H3
p , and all other vertices in H2

p and H3
p (except at PF ), belong to T -triangles. It can

be verified that these edge-partitions into triangles are indeed valid.
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Let H1
p and H2

p be two copies of Hp, and let Pk
F be an F-patch on Hk

p for each
k ∈ {1, 2}. We say that we apply an F-F join on (H1

p, H
2
p) if we remove the patches

P1
F and P2

F on the respective copies and replace them by one copy of an F-patch PF
(note that this construction is slightly different from the F-F-F join, as the center
of the patch is also included here). See Fig. 5a for an illustration. We claim that any
edge-partition of this new graph into triangles results in at least one of H1

p and H2
p

being partitioned into T -triangles. Similar to the proof for the F-F-F join, consider
an edge x = a → b belonging to the exterior of PF . There are now three possible
candidates for the third vertex of the triangle containing x : v1, v2, and c, where v1 and
v2 are parallel vertices on H1

p and H2
p , respectively, and c is a vertex in the center of

PF . If the third vertex of the triangle is v1 or v2, then the same proof for the F-F-F
join can be used to conclude that exactly one of H1

p and H2
p is partitioned into T -

triangles. Otherwise, the third vertex is c. In this case, the other edges in the center of
the F-patch can only belong to T -triangles, which implies that both H1

p and H2
p can

also only be partitioned into T -triangles. This shows that at least one of H1
p and H2

p is
partitioned into T -triangles. It can be verified that these edge-partitions into triangles
are indeed valid.

Let H1
p and H2

p be two copies of Hp, and let P1
F be an F-patch on H1

p and P2
T

be a T -patch on H2
p . We say that we apply an F-T join on (H1

p, H
2
p) if we remove

the patches P1
F and P2

T on the respective copies and replace them by one copy of
an F-patch PF—here, the replacement of P2

T by PF is “mirrored”. See Fig. 5b for
an illustration, where the mirroring is across the edge e → c. We claim that any
edge-partition of this new graph into triangles results in H1

p being partitioned into
T -triangles or H2

p being partitioned into F-triangles (or both). The proof is similar
to that of the F-F join, except that we reverse the argument regarding H2

p due to the
“mirror” effect on P2

T .
We are now ready to prove our result.

Lemma 4.2 Directed Triangle Partition is NP-hard.

Proof We shall reduce 3SAT to Directed Triangle Partition. Recall that in an
instance of 3SAT, we are given a set of variables Y = {y1, . . . , yq} and a set of
clauses C = {c1, . . . , cr } where each clause is a disjunction of three literals, i.e.,
c j = � j,1 ∨ � j,2 ∨ � j,3, and each literal is either a variable (i.e., � j,k = yi ) or its
negation (i.e., � j,k = yi ).

Choose p large enough so that there are at least 3r T -patches and 3r F-patches
in Hp that are pairwise non-interfering (say, p = 100r ). Assign to each variable yi
a separate copy of the graph Yi isomorphic to Hp, and assign to each literal � j,k

a separate copy of the graph L j,k isomorphic to Hp. For each j , apply an F-F-F
join on (L j,1, L j,2, L j,3) via any F-patch in L j,k . For each ( j, k), if the literal � j,k

corresponds to the variable yi , apply an F-F join on (L j,k,Yi ) via any unused F-
patches, and if the literal � j,k corresponds to yi , apply an F-T join on (L j,k,Yi ) via
any unused F-patch and T -patch.

Let G = (V , E) denote the constructed graph. This construction can be done in
time polynomial in the size of the 3SAT instance. Note that G is a directed graph with
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Fig. 5 a An F-F join on H1
p (solid lines) and H2

p (dashed lines). Both graphs share the patch PF (bold

lines). b The association of vertices between P1
F and P2

T in an F-T join on H1
p and H2

p—note the labelling
of vertices

no cycles of length 1 or 2. We claim that there exists a satisfying assignment in the
3SAT instance if and only if G can be edge-partitioned into triangles.

Suppose that there exists a partition of the edges of G into triangles. Consider one
such partition, and assign yi as true if and only if Yi is partitioned into T -triangles.
For each j , note that L j,k is partitioned into F-triangles for some k ∈ {1, 2, 3} due to
the F-F-F join—we claim that the corresponding literal � j,k is satisfied. If � j,k = yi
for some i , then Yi must be partitioned into T -triangles by the F-F join on (L j,k,Yi ),
which means that � j,k = yi is true. If � j,k = yi for some i , then Yi must be partitioned
into F-triangles by the F-T join on (L j,k,Yi ), which means that yi is false and
� j,k = yi is true. In both cases, we see that the literal � j,k is satisfied.
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Conversely, suppose there exists a satisfying assignment in the 3SAT instance,
and consider any satisfying assignment. For each i , if yi is true, partition Yi into T -
triangles; else, partition Yi into F-triangles. For each j , at least one of the literals in c j
is true; pick any one of them, say � j,k , and partition L j,k into F-triangles, and partition
the other two L j,k′ into T -triangles. We now verify that the edge-partition is a valid
partition by checking that the restrictions caused by the joins are not violated. For each
j , consider the F-F-F join on (L j,1, L j,2, L j,3)—since one L j,k is edge-partitioned
into F-triangles and the other two into T -triangles, the requirement on the F-F-F
join is satisfied. Now, for each ( j, k), if the literal � j,k corresponds to the variable yi ,
then the join on (L j,k,Yi ) is F-F , and at least one of L j,k and Yi is partitioned into
T -triangles (otherwise, if both are partitioned into F-triangles, then yi is false and
� j,k is true, which is not possible). On the other hand, if the literal � j,k corresponds to
yi , then the join on (L j,k,Yi ) is F-T , and L j,k is partitioned into T -triangles or Yi is
partitioned into F-triangles, or both (otherwise, if L j,k is partitioned into F-triangles
and Yi is partitioned into T -triangles, then both yi = � j,k and yi are true, which is not
possible). Therefore, the edges of G can be partitioned into triangles. ��
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